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Two 3-D metal organic frameworks containing
2,2′-bipyridine-5,5′-dicarboxylic acid: synthesis, structure,

and magnetic properties
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Two metal organic frameworks, {[M(H2BPDC)(SO4)]}n (M =Mn (1), Zn (2)); BPDC = 2,2′-bipyri-
dine-5,5′-dicarboxylic anion), have been synthesized under hydrothermal conditions. The structure
analyses of 1 and 2 reveal that the two compounds have similar 3-D structures. Compound 1 crystal-
lizes in the orthorhombic system with space group Pnma, while 2 displays a monoclinic system with
space group P21/n. Magnetic investigation suggests that weak antiferromagnetic coupling exists
between adjacent Mn2+ ions in 1.

Keywords: 2,2′-Bipyridine-5,5′-dicarboxylic anion; Manganese; Zinc; MOFs; Antiferromagnetic
coupling

Introduction

Crystal engineering plays an important role in the field of materials science and the determi-
nation of biological protein structures. The purpose of crystal engineering is to controllably
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synthesize metal organic frameworks (MOFs) based on structure–activity relationships. In
the past decades, the design and synthesis of MOFs have attracted interest owing to their
versatile applications including luminescence [1], molecular adsorption [2], ion exchange
[3], drug delivery [4], catalysis [5], and magnetism [6]. Additionally, MOFs have high crys-
tallinity which can guarantee the homogeneity of the material properties. Many spectacular
MOFs have been obtained [1–10]. Ligands play a key role in the design and synthesis of
MOFs. Especially, organic multi-carboxylate ligands, such as phthalic acid [7], terephthalic
acid [8], trimesic acid [9], and pyridine dicarboxylic acid [10], have been widely used to
construct MOFs.

In this contribution, 2,2′-bipyridine-5,5′-dicarboxylic acid (H2BPDC) [11] was selected
as the ligand to fabricate transition metal-based MOFs based on the following
considerations: (i) it is a polydentate ligand of up to six donors N2O4, displaying vari-
ous coordination modes; (ii) the higher symmetry of the ligand may cause generation
of ordered structures; (iii) the rigidity of the ligand may reduce the possibility of lattice
interpenetration in products. Subsequently, two MOFs {[M(H2BPDC)(SO4)]}n (M =Mn
(1), Zn (2)); BPDC = 2,2′-bipyridine-5,5′-dicarboxylic anion) were obtained and structur-
ally characterized. The magnetic analyses for 1 indicate the presence of antiferromag-
netic exchange between Mn2+ ions.

Experimental

Materials and physical measurements

All the chemicals purchased were of reagent grade and used without purification. Water
used in the reactions was distilled. The elemental analyses (C, H, and N) were carried out
on a Perkin-Elmer elemental analyzer. Magnetic susceptibilities were performed on a
Quantum Design PPMS-9 ACMS magnetometer. Diamagnetic corrections were made with
Pascal’s constants for all the constituent atoms.

The syntheses of 1 and 2 (3-D)

A mixture of MnSO4·H2O (0.3 mM, 51 mg) for 1 and ZnSO4·7H2O (0.3 mM, 86 mg) for 2,
H2BPDC (0.1 mM, 24 mg), H2O (4 mL), and C2H5OH (6 mL) was added in a 25 mL
Teflon-lined stainless steel reactor at 140 °C for 2 days, and then slowly cooled to room
temperature. Colorless block-like crystals of 1 and 2, suitable for X-ray data collection,
were obtained by filtration, washed by distilled water, and air-dried. Yield: 48 and 28%
based on BPDC for 1 and 2, respectively. Elemental analysis Calcd (%) for
C12H8MnN2O8S (1): C, 36.47; H, 2.04; N, 7.09. Found: C, 36.39; H, 2.07; N, 7.13. For
C12H8ZnN2O8S (2): C, 35.53; H, 1.99; N, 6.91. Found: C, 35.46; H, 2.04; N, 6.95.

Crystallographic studies

Single-crystal X-ray diffraction measurements of 1 and 2 were collected at 173 K on a
SuperNova Single Crystal Diffractometer equipped with graphite monochromated MoKα
radiation (λ = 0.71073 Å). Lorentz polarization and absorption corrections were applied. The
structures were solved by direct methods and refined by full-matrix least-squares techniques

MOFs containing bipy dicarboxylate 2281
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using SHELXS-97 and SHELXL-97 [12]. Anisotropic thermal parameters were assigned to
all non-hydrogen atoms. The hydrogens were placed in idealized positions. Compound 2 is
a twin crystal structure, which is split by the software. Crystallographic data for 1 and 2 are
summarized in table 1. Selected bond lengths and angles are summarized in table (S1, see
online supplementary material at http://dx.doi.org/10.1080/00958972.2014.944175) in
Supplemental data.

Results and discussion

Crystal structure of {[M(H2BPDC)(SO4)]}n (M =Mn(1), Zn(2))

X-ray diffraction analysis reveals that 1 crystallizes in the orthorhombic system, space group
Pnma. Compound 2 is isostructural to 1; however, different space group P21/n (figures
S1–S3), and so the structure of 2, is not commented. The asymmetric unit of 1 consists of
one crystallographically independent Mn2+, one BPDC ligand, and one sulfate, as shown in
figure 1. The local coordination geometry for the six-coordinate Mn1 is distorted octahedral,
which consists of one carboxylic oxygen, two nitrogens, and three oxygens from three sulfate
anions. The Mn–O (carboxylic) distance is 2.231(5) Å, Mn–O (sulfate), bond lengths are
2.094(5) and 2.158(4) Å, and the Mn–N bond distances are 2.247(6) and 2.280(6) Å, respec-
tively. The BPDC anion is a bidentate metal linker (scheme 1) with the two nitrogens che-
lated with one Mn2+ and one carboxylic oxygen coordinating with another Mn2+. The
sulfate, which acts as a tridentate ligand, plays a rather important role in the construction of

Table 1. Crystal data and structure refinement details for 1 and 2.

Complex 1 2

Formula C12H8MnN2O8S C12H8ZnN2O8S
Fw 395.21 405.63
Temperature (K) 173(2) 173(2)
Crystal system Orthorhombic Monoclinic
Space group Pnma P21/n
a (Å) 10.949(2) 6.4251(5)
b (Å) 6.5995(13) 10.8881(8)
c (Å) 18.318(4) 18.3449(17)
α (°) 90 90
β (°) 90 97.213(8)
γ (°) 90 90
V (Å3) 1323.6(5) 1273.20(18)
Z 4 4
DCalcd (g/cm

3) 1.983 2.116
μ (mm−1) 1.207 2.147
Total reflns. 10,413 5737
Unique reflns. 1275 5737
Parameters 142 223
θ Range (°) 3.28/25.01 2.90/28.96
F (0 0 0) 796 816
GOF on F2 1.170 1.042
Rint 0.0815 –
R1/wR2 [I > 2σ(I)] R1 = 0.0664 R1 = 0.0553

wR2 = 0.1126 wR2 = 0.1489
R1/wR2 (all data) R1 = 0.0828 R1 = 0.0652

wR2 = 0.1186 wR2 = 0.1587

2282 M. Fang et al.
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the structure. The Mn2+ is connected to a 1-D ladder-like chain, along the b direction by
bridging sulfates (figure 2), then the 1-D chain is further connected to a 3-D framework by
the ligands (figure 3).

Magnetic properties

The magnetic susceptibilities of 1 were measured on the microcrystalline sample from 2 to
300 K under 1000 Oe field, as shown in figure 4. At room temperature, the χMT value for 1 is
4.15 cm3 KM−1, close to the expected value of 4.38 cm3 KM−1 for one Mn2+ ion (S = 5/2).
On lowering the temperature, the χMT value decreases gradually from 4.15 cm3 KM−1 at
300 K to 3.68 cm3 KM−1 at 50 K, then slumps to a value of 0.4 cm3 KM−1 at 2 K. This
behavior may indicate the presence of weak antiferromagnetic coupling between adjacent
Mn2+ ions. The temperature dependence of the reciprocal susceptibilities (1/χM) above 10 K
obeyed the Curie–Weiss law 1/χM= (T − θ)/C with C = 4.32 and Weiss constant θ = −9.02.
The negative value of θ further confirms the existence of antiferromagnetic coupling between
Mn2+ ions [13]. For 1, the main magnetic interactions may occur between adjacent Mn2+ ions
bridged by sulfate, whereas the exchange interactions between Mn2+ ion bridged through
BPDC may be ignored because of the long Mn⋯Mn distance; the structure is taken as an
infinite-chain model. To estimate the strength of the antiferromagnetic coupling, the equation

Figure 1. The molecular structure of 1.

Figure 2. The 1-D chain structure of 1 along the b direction.

MOFs containing bipy dicarboxylate 2283

D
ow

nl
oa

de
d 

by
 [

In
st

itu
te

 O
f 

A
tm

os
ph

er
ic

 P
hy

si
cs

] 
at

 1
5:

17
 0

9 
D

ec
em

be
r 

20
14

 



derived by Fisher with H = −2 JΣSiSi+1 as following is applied to fit the magnetic data above
10 K:

v ¼ Nb2g2

kT
� Aþ Bx2

1þ Cxþ Dx3
(1)

Figure 3. The 3-D framework of 1 along the c direction. Color codes: red, O; green, Mn; yellow, S; blue, N (see
http://dx.doi.org/10.1080/00958972.2014.944175 for color version).

Figure 4. The plots of χMT vs. T, 1/χM vs. T and the linear fit of Curie–Weiss law for 1 under 1000 Oe field.

2284 M. Fang et al.
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x ¼ Jj j=kT (2)

In this equation [14], A = 2.9167, B = 208.04, C = 15.543, D = 2707.2; N, g, β, k have
their usual meanings; and J is the exchange coupling constant between adjacent Mn2+ ions.
Based on this equation, the least-squares fitting of magnetic susceptibility data leads to J
= −0.48 cm−1, g = 2.00, and the agreement factor R, defined as R =∑(χobsd− χCalcd)

2/
∑(χobsd)

2, is 1.54 × 10−3. The result indicates very weak antiferromagnetic interaction
between Mn2+. Such a weak coupling interaction often occurs through carboxylate bridges
in manganese(II) compounds. Zuo et al. reported a 3-D manganese-based MOF with a J
value of −0.27 cm−1, and the metal centers bridged in a Mn–O-C-O–Mn model [15].
Hachuła et al. reported that a compound with Mn–O-C-O–Mn bridge has a J value of
−0.74 cm−1 [16].

Conclusion

Two 3-D MOFs have been synthesized under hydrothermal conditions and structurally char-
acterized. The magnetic properties reveal that weak antiferromagnetic interaction exists
between the adjacent Mn2+ ions in 1.
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